

Name:

Sequence Number:

Teacher's Name:

King Saud University

Department of Mathematics

2nd Semester 1438-1439 H

MATH 244 (Linear Algebra)

Final Exam

Duration: three hours

Section:							
Note: The exam consists of 8 pages							
Question	Mark						
Question I							
Question II							
Question III							
Question IV							
Question V							
Question VI							

Bonus

Total

Question Number	1	2	3	4	5	6	7	8	9	10
Answer	a	a								

Question I

Choose the correct answer, then fill in the table above:

- (d) None of the previous

(2) If u = (3, 1) and v = (-1, 4), then ||-2u|| + ||2v|| =

- (a) $2(\sqrt{10} + \sqrt{17})$
- (b) $2(-\sqrt{10} + \sqrt{17})$ (c) $-2(\sqrt{10} + \sqrt{17})$
- (d) None of the previous

(3) If A is the zero matrix and $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is the corresponding matrix operator, then the column space of A is:

(a) \mathbb{R}^n

- $(b)\mathbb{R}^m$
- (c) {0}

(d) None of the previous

(4) If T_1 is the reflection operator about the line y = x in \mathbb{R}^2 , and T_2 is the orthogonal projection on the **y-axis**, then $[T_1 \circ T_2]$ is:

- (d) None of the previous

(a) $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$ (d) N

(5) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $AB = \begin{bmatrix} 7 & 3 & -4 \\ -1 & 6 & 21 \\ 9 & 0 & 5 \end{bmatrix}$ then the second column vector of B is:

- (b) [3]
- $\begin{array}{c|c} (c) & 3 \\ 12 \\ 0 \end{array}$
- (d) None of the previous

(6) Let $f_1 = e^x$, $f_2 = x$ and $f_3 = 5$. Then the Wronskian of f_1 , f_2 and f_3 is:

- (a) $5e^x$
- (b) $-5e^x$
- (c) $(5-x)e^x$
- (d) None of the previous

(7) If A is a 5×7 matrix and rank A = 3, then the nullity of A^T equals:

(a) 2

(b)3

(c)4

(d) None of the previous

(8) The dimension of the set $Span\{(2,0), (1,1)\}$ equals:

(a) 0

(b) **1**

(c) 2

(d) None of the previous

(9) If $u, v \in \mathbb{R}^3$ and u, v are orthogonal vectors, then $u \cdot v =$

(a) 0

(b) (0, 0, 0)

(c) 1

(d) None of the previous

(10) The eigenvalues of A, where $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 5 \\ 0 & 0 & -1 \end{bmatrix}$ are

(a) 1 and 2.

(b) 1 and -1.

(c) 1, 2, and -1.

(d) None of the previous

Question II

If $W = \{(a, b, c, d) \in \mathbb{R}^4 \mid d = a + b, c = a - b\}$. Then answer the following:

1. Prove that W is a subspace of \mathbb{R}^4 .

2. Find a basis for W.

Question III

1. Show that the polynomials $p_1(x) = x^2 + 1$, $p_2(x) = x^2 - 1$, and $p_3(x) = 2x + 1$ form a basis for P_2 .

2. Find the coordinate vector $(p)_S$ of $p(x) = x^2 + x - 1$ relative to the basis $S = \{p_1, p_2, p_3\}$.

Question IV

Let
$$A = \begin{bmatrix} 3 & -6 & 0 & 9 \\ 1 & -1 & 2 & 2 \\ 3 & 1 & 4 & 12 \\ -2 & 5 & 1 & -6 \end{bmatrix}$$
. Then answer the following:

1. Find a basis for the row space and the column space of the matrix A.

- 2. Find the rank and the nullity of A.
- 3. Find a basis for the solution space of Ax = 0.

Question V

Let $T: \mathbb{R}^2 \to \mathbb{R}^2$, be the transformation defined by T(x, y) = (-x + y, x + y). Then answer the following:

1. Find the matrix [T].

2. Prove that **T** is one-to-one.

3. Find $T^{-1}(x, y)$.

Question VI

Let
$$A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$
. Then answer the following:

1. Prove that $\lambda = 2$ and $\lambda = 4$ are eigenvalues of A.

2. Find a basis for the eigenspace corresponding to the eigenvalue $\lambda = 2$.